What you still might want to know about
microarrays

Haploid
3
T

Diploid
<
-
m

<
o
lo]
o
T O |

Nucteosome [N NININIR FHREE T 0RO 0BT Flb AU O e o e i iprm 0O N N 00 A
» L ~ I I o I g ~ L I e I r" >
w AL131W  SUT285 RSCO CUT281 GTR1 SUT286 |NGL3| NAB6 | ATR1 DATH BUL2 zDs2 | |  URAS CUT28!
CUT280 YML119W YML116W-A CTK3 YML108W CUT282
10900 20000 30000 40000 50000 6000
Ll T Ll T L 1

MSC1 PGA3 YML122C SUT715 SUT716
c ERO1 COX14 ERG13 TUB3 PHO84 ‘ NDI1 VAN1 TAF8 CUT758 €0Qs

PML39
CUT759 SECE5 I
< < < Y k] b de < <

< B R o

Nucleosome I LN JUREMI N0 SN0 00000 Pt 0 I AU IO U T vy O vy o 1 N N AT U I

Bl 'R '
| N |

I |}

l

ToBAD ‘ |‘

Haploid
3
(o]
it

Diploid
<
)
m
N

Brixen 2011
Wolfgang Huber
EMBL



Brief history

Late 1980s: Lennon, Lehrach: cDNAs spotted on nylon membranes

1990s: Affymetrix adapts microchip production technology for in situ
oligonucleotide synthesis (commercial, patent-fenced)

1990s: Brown lab in Stanford develops two-colour spotted array
technology (open and free)

1998: Yeast cell cycle expression profiling on spotted arrays
(Spellmann) and Affymetrix (Cho)

1999: Tumor type discrimination based on mRNA profiles (Golub)
2000-ca. 2004: Affymetrix dominates the microarray market

Since ~2003: Nimblegen, lllumina, Agilent (and many others)
Throughout 2000‘s: CGH, CNVs, SNPs, ChlIP, tiling arrays

Since ~2007: Next-generation sequencing (454, Solexa, ABI Solid,...)



Oligonucleotide microarrays

1.28 cm

Actual size of
GeneChip® array

Millions of DNA strands built up in each location ‘7

500,000 locations on each GeneChipnarray
Actual strand = 25 base pairs



Base Pairing

I-( Adenine Thymine
Cytosine

Guanine

Ability to use hybridisation for constructing specific +
sensitive probes at will is unique to DNA (cf. proteins,
RNA, metabolites)



Oligonucleotide microarrays

Hybridized Probe Cell

*

GeneChip

*
*

Target - single stranded cDNA B
oligonucleotide probe— %m
millions of copies of
a specific
oligonucleotide

probe molecule per
cell

1.28cm B

up to 6.5 Mio
different probe cells

Image of array after hybridisation
and staining



Probe sets

GeneChip® Expression Array Design

MRNA reference sequence

5 : / 3

Spaced DNA probe pairs
Reference sequence / \ P P p

TGTGATGGTGGGAATGGGTCAGAAGGACTCCTATGTGGGTGACGAGGCC

TTACCCAGTCTTCICTGAGGATACACCCAC Perfect Match Oligo
TTACCCAGTCTTGICTGAGGATACACCCAC  Mismatch Oligo

A
H
i

Perfect match probe cells

Fluorescence Intensity Image /

Mismatch probe cells

Figure 1-3 Expression tiling strategy




Terminology for transcription arrays

Each target molecule (transcript) is represented by
several oligonucleotides of (intended) length 25
bases

Probe: one of these 25-mer oligonucleotides

Probe set: a collection of probes (e.g. 11) targeting
the same transcript

MGED/MIAME: ,,probe* is ambiguous!

Reporter: the sequence

Feature: a physical patch on the array with
molecules intended to have the same reporter
sequence (one reporter can be represented by
multiple features)



Image analysis

» several dozen
pixels per feature

* segmentation

« summarisation into
one number
representing the
intensity level for
this feature

- CEL file




uarray data

arrays:
probes =
gene-specific
DNA strands
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samples:
MRNA from
tissue
biopsies,
cell lines

uarray data

fluorescent detection

of the amount of

sample-probe binding

tissue A tissue B tissue C
ErbB2 0.02 1.12 212
VIM 1.1 5.8 1.8
ALDH4 2.2 0.6 1.0
CASP4 0.01 0.72 0.12
LAMA4 1.32 1.67 0.67
MCAM 4.2 2.93 3.31

arrays:
probes =
gene-specific
DNA strands



Microarray
Infrastructure in
Bioconductor



Platform-specific data import and initial processing

Affymetrix 3’ IVT (e.g. Human U133 Plus 2.0, Mouse 430 2.0):
affy

Affymetrix Exon (e.g. Human Exon 1.0 ST):
oligo, exonmap, xps

Affymetrix SNP arrays:
oligo

Nimblegen tiling arrays (e.g. for ChlP-chip):

Ringo

Affymetrix tiling arrays (e.g. for ChiP-chip):
Starr

lllumina bead arrays:
beadarray, lumi

http://www.bioconductor.orq/docs/workflows/oligoarravs


http://www.affymetrix.com/estore/browse/products.jsp?productId=131455&categoryId=35760
http://www.affymetrix.com/estore/browse/products.jsp?productId=131455&categoryId=35760
http://www.affymetrix.com/estore/browse/products.jsp?productId=131477&categoryId=35924
http://www.affymetrix.com/estore/browse/products.jsp?productId=131477&categoryId=35924
http://www.bioconductor.org/docs/workflows/oligoarrays/
http://www.bioconductor.org/docs/workflows/oligoarrays/

Flexible data import

Using generic R |I/O functions and constructors

Biobase
1 imma

Chapter Two Color Arrays in the useR-book.
limma user guide



Normalisation and quality

assessment
preprocessCore
1l imma
vsSin

arrayQualityMetrics



NChannelSet

assayData can contain N=1, 2, ..., matrices of the same size

phenoData
(AnnotatedDataframe)
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Annotation / Metadata

Keeping data together with the metadata (about reporters,
target genes, samples, experimental conditions, ...) is one
of the major principles of Bioconductor

¢ avoid alignment bugs
e facilitate discovery

Often, the same microarray design is used for multiple
experiments. Duplicating that metadata every time would be
inefficient, and risk versioning mismatches =

instead of featureData, just keep a pointer to an
annotation package.

(In principle, one could also want to do this for samples.)



Annotation infrastructure for
Affymetrix

For affy:

hgul33plus2.db “all available” information
about target genes

hgul33plus2cdf maps the physical features
on the array to probesets
hgul33plus2probe nucleotide sequence of
the features (e.g. for gcrma)



Genotyping

crlmm Genotype Calling (CRLMM) and Copy Number

Analysis tool for Affymetrix SNP 5.0 and 6.0 and
lllumina arrays.

snpMatrix

.... others See also:

Genome-wide association study of CNVs in
16,000 cases of eight common diseases and
3,000 shared controls, The Wellcome Trust
Case Control Consortium, Nature 464, 713-720
(Box 1).



http://www.nature.com/nature/journal/v464/n7289/full/nature08979.html
http://www.nature.com/nature/journal/v464/n7289/full/nature08979.html
http://www.nature.com/nature/journal/v464/n7289/full/nature08979.html
http://www.nature.com/nature/journal/v464/n7289/full/nature08979.html
http://www.nature.com/nature/journal/v464/n7289/full/nature08979.html
http://www.nature.com/nature/journal/v464/n7289/full/nature08979.html

Gene expression
analysis with
microarrays



Microarray Analysis Tasks

Data import
reformating and setup/curation of the metadata

Normalisation
Quality assessment & control

Florian Hahne - Wolfgang Huber
Robert Gentleman + Seth Falcon

Differential expression

Using gene-level annotation
Gene set enrichment analysis

Clustering & Classification

Integration of other datasets



» What is wrong with microarray data?

Many data are measured in
definite units:

 time in seconds

* lengths in meters

e energy in Joule, etc.

Climb Mount Plose (2465 m) from
Brixen (559 m) with weight of
76 kg, working against a
gravitation field of strength
9.81 m/s?:

(2465 - 559) - 76 - 9.81 m kg m/s?
=1 421 037 kg m2s-
=1421.037 kJ



» What is wrong with microarray data?

Many data are measured in
definite units:

« time in seconds

* lengths in meters

e energy in Joule, etc.

Climb Mount Plose (2465 m) from
Brixen (559 m) with weight of
76 kg, working against a
gravitation field of strength
9.81 m/s?:

(2465 - 559) - 76 - 9.81 m kg m/s?
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= 1 421.037 kJ



A complex measurement process lies between
MRNA concentrations and intensities

o RNA
degradation

o amplification
efficiency

O reverse
transcription
efficiency

o hybridization
efficiency and
specificity

o labeling
efficiency

o quality of actual
probe sequences

(vs intended)

o scratches and
spatial gradients

on the array

o cross-talk
across features

O Cross-
hybridisation

o optical noise

o image
segmentation

o signal
quantification

o signal
"preprocessing”



A complex measurement process lies between

MRNA concentrations and intensities

o RNA o quality of actual o image
degradation probe sequences segmentation
0 ¢

eff

The problem is less that these
steps are ‘not perfect’; it is that

or

tra they vary from array to array,
eff experiment to experiment.

ol

eff

SPLerrrery

o labeling o optical noise

efficiency



Background signal and
non-linearities



“mild” non-linearity
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2003



Log,, Observed

0.0625

1 uglwell

» ratio compression
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Yue et al.,
(Incyte
Genomics)
NAR (2001)
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Preprocessing Terminology

Calibration, normalisation: adjust for systematic drifts
associated with dye, array (and sometimes position
within array)

Background correction: adjust for the non-linearity at the
lower end of the dynamic range

Transformation: bring data to a scale appropriate for the
analysis (e.g. logarithm; variance stabilisation)

Log-ratio: adjust for unknown scale (units) of the data

Existing approaches differ in the order in which these
steps are done, some are exactly stepwise (,,greedy*),
others aim to gain strength by doing things
simultaneously.



Statistical issues




» Which genes are differentially transcribed?
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» Which genes are differentially transcribed?
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p» Sources of variation

amount of RNA in the biopsy probe purity and length
efficiencies of distribution

-RNA extraction spotting efficiency, spot size
-reverse transcription cross-/unspecific hybridization
-labeling stray signal

-fluorescent detection
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p» Sources of variation

amount of RNA in the biopsy
efficiencies of

-RNA extraction

-reverse transcription
-labeling

-fluorescent detection

Systematic

o similar effect on many
measurements

o corrections can be
estimated from data

Calibration

probe purity and length
distribution

spotting efficiency, spot size

cross-/unspecific hybridization

stray signal

Stochastic

o too random to be ex-
plicitely accounted for
o remain as “noise”

Error model



Why do you need
‘normalisation’
(a.k.a. calibration)?



lc7b048.CLL-13

10000

1000

100

10

Systematic drift effects

10

|
100

|[c7b048 reference

1000

10000

From: lymphoma
dataset

vsn package

Alizadeh et al.,
Nature 2000



Quantile normalisation

Within each column (array),
replace the intensity values by
their rank

For each rank, compute the
average of the intensities with
that rank, across columns
(arrays)

Replace the ranks by those
averages

features (genes)

arrays (samples)

Ben Bolstad 2001



Density
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Quantile normalisation
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Quantile normalisation

Simple, fast, easy to implement
Always works, needs no user interaction / tuning

Non-parametric: can correct for quite nasty non-linearities
(saturation, background) in the data

- Always "works", even if data are bad / inappropriate

- May be conservative: rank transformation looses
information - may yield less power to detect differentially
expressed genes

- Aggressive: if there is an excess of up- (or down) regulated
genes, it removes not just technical, but also biological
variation



Estimating relative
expression
(fold-changes)



P ratios and fold changes

Fold changes are useful to describe
continuous changes in expression
A

3000 | Py
x3

1500 ®
1000 | ® 15

A B C

But what if the gene is “off” (below
detection limit) in one condition?

A
3000 _ °




» ratios and fold changes

The idea of the log-ratio (base 2)
0: no change
+1: up by factor of 21=2
+2: up by factor of 22 =4
-1: down by factor of 2-1=1/2
-2: down by factor of 22 =",
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meaning to one from 5000 to 10000.
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» ratios and fold changes

The idea of the log-ratio (base 2)
0: no change
+1: up by factor of 21=2
+2: up by factor of 22 =4
-1: down by factor of 2-1=1/2
-2: down by factor of 22 =",

A unit for measuring changes in expression: assumes that
a change from 1000 to 2000 units has a similar biological
meaning to one from 5000 to 10000.

.... data reduction

What about a change from 0 to 5007
- conceptually
- noise, measurement precision



Two component error
model and variance
stabilisation



CH2
1000 2000 3000 4000 500

0

The two-component model

s ..; J
¢ ::'.;:“ .
. ....;, 3:::. : y N
‘%... ..0 . T
Pk O
o 0: :
0 1000 2000 3000 4000 5000
CH1
raw scale

5000 20000

1000

200

50

|

|

1

|

|

|

|

50

. .
. * .’0
L 4
.o

*
[ _J
.0

200 1000 5000 20000
CH1

log scale

B. Durbin, D. Rocke, JCB 2001



CH2
1000 2000 3000 4000 500

0

The two-component model
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B. Durbin, D. Rocke, JCB 2001



CH2
1000 2000 3000 4000 500

0

The two-component model

We will see something
similar in with short read
count data - just replace
the additive component

1000 2000 3000 400
CH1

with Poisson

raw scale og scale

B. Durbin, D. Rocke, JCB 2001




variance

4000 8000

0

| var=1000+0.01 mean?

The additive-multiplicative error

model
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The additive-multiplicative error
model

Trey Ideker et al.: JCB (2000)

David Rocke and Blythe Durbin: JCB (2001),
Bioinformatics (2002)

Use for robust affine regression normalisation: W. Huber,
Anja von Heydebreck et al. Bioinformatics (2002).

For background correction in RMA: R. Irizarry et al.,
Biostatistics (2003).



» The two component model

measured intensity = offset + gain x true abundance

Yik =y + 0, X,

a,.k = a,. + €, b,'k = bi bk exp(nik)
a; per-sample offset b; per-sample
gain factor

¢, additive noise
b, sequence-wise

probe efficiency

n; Multiplicative noise



P variance stabilizing transformations

X, a family of random variables with
E(X,)=u and Var(X,)=v(u). Define

) du
f —
(x) f =

Then, var f(X,) = does not depend on u

Derivation: linear approximation,
relies on smoothness of v(u).



P variance stabilizing transformation
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P variance stabilizing transformations

~ 1
f(x)=fmdu

1.) constant variance (‘additive’) viu)=s®* = f xu
2.) constant CV (‘multiplicative’) viu)xu?® = f «logu
3.) offset v(u)x(u+u,)?’ = f xlog(u+u,)

4.) additive and multiplicative
u+u,
S

v(u)x(u+u,)’+s®> = f xarsinh



» the “glog” transformation

m log(x)

B glog.(x)
A log(x +Xe)

I I I I I
-50 o) 50 100 150

gIng(X’C) = Iogz

(X+\/X2+02]
2

glog,(x,1)+log, 2 = arsinh(x)

P. Munson, 2001

D. Rocke & B. Durbin,
ISMB 2002

W. Huber et al., ISMB
2002
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Parameter estimation

arsinh
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Parameter estimation

Y — G

arsinh ™ L w +&,, g : N(O,c?)

measured intensity = offset + gain * +true abundance

Y = G + by X,

a, =a +L, +¢ b, =b b expny)

a; per-sample offset b, per-sample
normalization factor
L, local background

provided by image b, sequence-wise
analysis labeling efficiency
e~ N(O, bis?) ik~ N(O,s5,?)

“additive noise” “multiplicative noise”




Parameter estimation

arsinh

yki - G

b,

= W T €y,

€i °
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Parameter estimation

yki - G

inh ;
arsin b'

=w +&., ¢;: N(,c?)

o maximum likelihood estimator: straightforward —
but sensitive to deviations from normality

o model holds for genes that are unchanged;
differentially transcribed genes act as outliers.

o robust variant of ML estimator, a la Least
Trimmed Sum of Squares regression.

o works well as long as <50% of genes are
differentially transcribed (and may still work otherwise)




X
“usual” log-ratio log—-
X5

glog” X, + \/ X +CF
(generalized |og
log-ratio) X, + \/X22 n C22

c,, C, are experiment specific parameters (~level
of background noise)




Variance-bias trade-off and shrinkage
estimators

a general technology in statistics:

pay a small price in bias for a large decrease of variance, so
overall the mean-squared-error (MSE) is reduced.

Particularly useful if you have few replicates.

is a shrinkage estimator for log fold
change



other
background

correction
methods



Background correction
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Fig. 5. Histograms of log, (M M) for a array in which no probe-set was spiked along with the three arrays in which
BioB-5 was spiked-in at concentrations of 0.5, 0.75, and 1 pM. The observed P M values for the 20 probes associated
with BioB-5 are marked with crosses and the average with an arrow. The black curve represents the log normal
distribution obtained from left-of-the-mode data.



RMA Background correction

PM=B+S

B ~log-normal with mean and sd read off MM values

S ~ exponential
=> closed form expression for E[S | PM],
use thisas s (> 0).

(NB, P[S > 0] =1is not realistic)

Irizarry et al. (2002)
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Background correction:

raw

intensities x

/

biased
background
correction
s=E[S|data]

!

I0g,(s)

AN

unbiased
background
correction
s=x-b

v

glog,(s|data)

/
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background correction
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Summaries for Affymetrix
genechip probe sets



Data and notation

mismatch probe k for gene g on chip i
i=1,...,n one to hundreds of chips
k=1,..,J usually 11 probe pairs
g=1,..., G tens of thousands of probe sets.

Tasks:

calibrate (normalize) the measurements from different chips
(samples)

summarize for each probe set the probe level data, i.e., 11 PM
and MM pairs, into a single expression measure.

compare between chips (samples) for detecting differential
expression.



Expression measures:
MAS 4.0

Affymetrix GeneChip MAS 4.0 software used AvDiff,
a trimmed mean:

e
AVDIff = #—K;K(PMK ~ MM, )

o sort d, = PM, -MM,
o exclude highest and lowest value

o K := those pairs within 3 standard deviations of
the average




Expression measures

MAS 5.0
Instead of MM, use "repaired” version CT
CT =MM if MM<PM
= PM / "typical log-ratio" if MM>=PM

Signal = Weighted mean of the values log(PM-CT)
weights follow Tukey Biweight function
(location = data median,

scale a fixed multiple of MAD)




Expression measures:
Li & Wong

dChip fits a model for each gene

PM, -MM,; =6,¢, +¢,, &, *N(0,0°)

/

where
¢;: expression measure for the gene in sample J

0, : probe effect

¢; is estimated by maximum likelihood
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Expression measures
RMA: Irizarry et al. (2002)

dChip

Vi =00+, g, N(0,c?)

/ /

RMA

log, Y, =a, +b, +¢,,

b; is estimated using the robust method median polish

(successively remove row and column medians,
accumulate terms, until convergence).



Quality assessment




Quality assessment

arrayQiJalityMetrics
example quality report
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What about non-linear effects

o Microarrays can be operated in a linear regime, where
fluorescence intensity increases proportionally to target
abundance (see e.g. Affymetrix dilution series)

Two reasons for non-linearity:

o At the high intensity end: saturation/quenching. This can
(and should) be avoided experimentally - loss of data!

o At the low intensity end: background offsets, instead of
y=k-x we have y=k-x+x,, and in the log-log plot this can

look curvilinear. But this is an affine-linear effect and can
be correct by affine normalization. Local polynomial
regression may be OK, but tends to be less efficient.
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